A Model for Predicting the Evolution of Damage in Viscoelastic Particle-Reinforced Composites
نویسندگان
چکیده
A viscoelastic cohesive zone model is employed within the framework of a finite element code to analyze a two-phase viscoelastic particle-reinforced composite material consisting of a relatively stiff aggregate embedded in a copolymer binder. The composite of interest, LX17, is noted to have a very large aggregate volume fraction and as such, aggregate grain boundaries were generated within finite element meshes along which viscoelastic cohesive zones have been embedded to model the binder. It has been observed experimentally that the majority of damage in LX17 occurs within the binder, and thus, a damage evolution law has been applied to the viscoelastic cohesive zones that is phenomenological in nature. The responses obtained for the composite from the FEM analysis are then compared to the experimental data compiled by Lawrence Livermore National Labs for various constant strain rate tests conducted by Groves and Cunningham [Tensile and compressive mechanical properties of billet pressed LX17-1 as a function of temperature and strain rate. UCRL-ID-137477. Internal report prepared for Lawrence Livermore National Laboratory, Livermore, CA]. 2004 Elsevier Ltd. All rights reserved.
منابع مشابه
FEM Implementation of the Coupled Elastoplastic/Damage Model: Failure Prediction of Fiber Reinforced Polymers (FRPs) Composites
The coupled damage/plasticity model for meso-level which is ply-level in case of Uni-Directional (UD) Fiber Reinforced Polymers (FRPs) is implemented. The mathematical formulations, particularly the plasticity part, are discussed in a comprehensive manner. The plastic potential is defined in effective stress space and the damage evolution is based on the theory of irreversible thermodynamics. T...
متن کاملComparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites
Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...
متن کاملA numerical study on reinforced composites by spherical nano-particles
In the current paper, finite element method is employed for numerical simulations and the study of influential parameters on elastic modulus of polymer-matrix nano-composites. Effects of different key parameters including particle elastic modulus, interphase elastic modulus, matrix elastic modulus, interphase thickness and particle volume fraction on total elastic modulus of nano-composite mate...
متن کاملA numerical study on reinforced composites by spherical nano-particles
In the current paper, finite element method is employed for numerical simulations and the study of influential parameters on elastic modulus of polymer-matrix nano-composites. Effects of different key parameters including particle elastic modulus, interphase elastic modulus, matrix elastic modulus, interphase thickness and particle volume fraction on total elastic modulus of nano-composite mate...
متن کاملPredicting the Long Term Life of Polymer Composites Using Time Temperature Shift Factor (TTSF)
The use of Carbon Fiber–Reinforced Polymers (CFRP) has increased in number of industries i.e. aerospace, automobiles, marine, medical and sports due to their light weight and high strength-stiffness. However, their properties are greatly affected under extreme e environmental conditions i.e. high temperatures and moisture uptake. The paper reports an experimental study to determine the response...
متن کامل